Coordination Chemistry Part -1

Asst. Prof. Dr. Abbas A. S. Al-Hamdani

Lecture: Complexes & Introducing the Ligands

Lewis Model of coordinate Bonding

Neutral and Anionic Ligands

Mono- and bidentate ligands

Multidentate ligands

Inner and outer sphere coordination

Definition the Complex:

A complex or coordination compound is a compound in which an atom (called "central atom") is bound to more groups (called "ligands") than expected with respect to its charge and position in the periodic table.

The number of ligands around a central atom is called the "coordination number".

Transition metals act as Lewis acids

Form complexes/complex ions

$$Fe^{3+}(aq) + 6CN^{-}(aq) \rightarrow Fe(CN)_{6}^{3-}(aq)$$
 Lewis acid Lewis base Complex
$$ion \\ Ni^{2+}(aq) + 6NH_{3}(aq) \rightarrow Ni(NH_{3})_{6}^{2+}(aq)$$
 Lewis acid Lewis base Complex
$$ion$$

Complex contains central metal ion bonded to one or more molecules or anions

Lewis acid = metal = center of coordination

Lewis base = ligand = molecules/ions covalently bonded to metal in complex

Transition metals act as Lewis acids

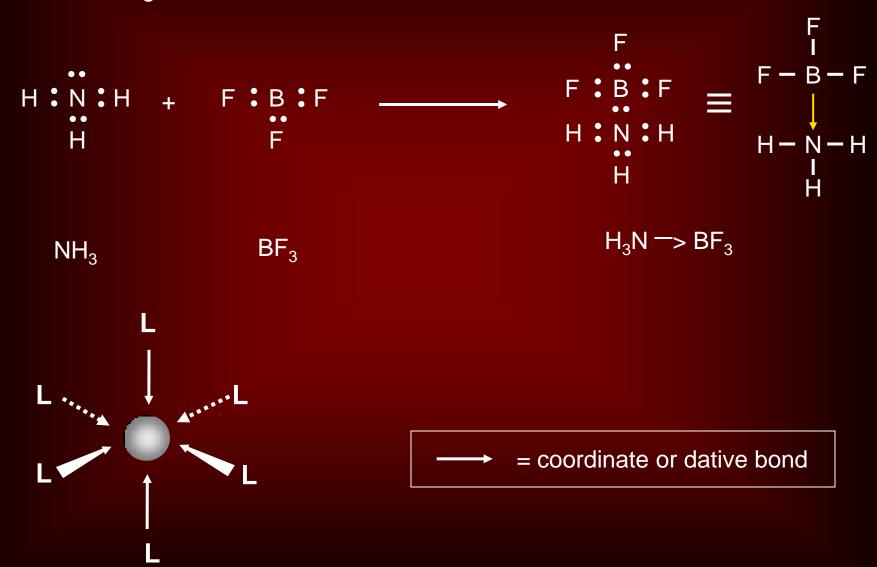
Form complexes/complex ions

Fe³⁺(aq) + 6CN⁻(aq)
$$\rightarrow$$
 [Fe(CN)₆]³⁻(aq)
Lewis acid Lewis base Complex
ion
Ni²⁺(aq) + 6NH₃(aq) \rightarrow [Ni(NH₃)₆]²⁺(aq)
Lewis acid Lewis base Complex
ion

Complex with a net charge = complex ion

Complexes have distinct properties

Metal-Ligand Bond

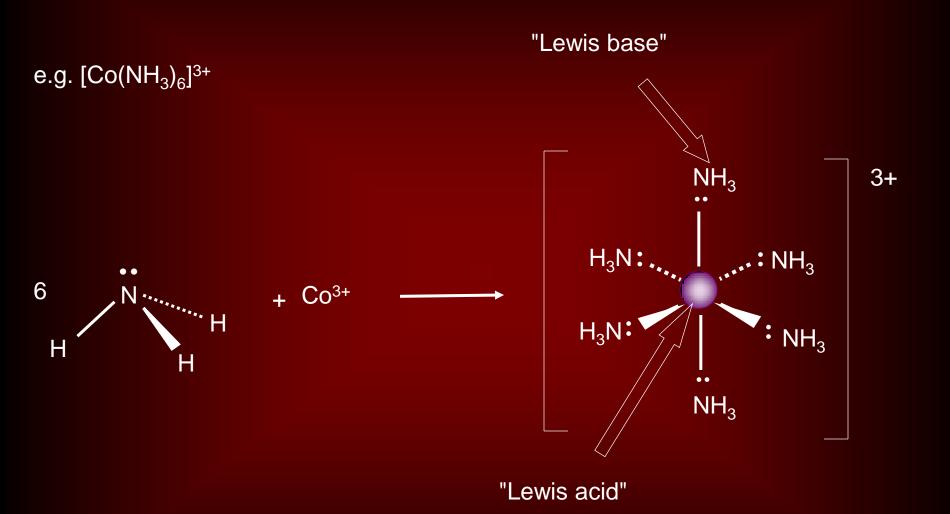

- This bond is formed between a Lewis acid and a Lewis base.
 - The ligands (Lewis bases) have nonbonding electrons.
 - The metal (Lewis acid) has empty orbitals.

$$Ag^{+}(aq) + 2:N - H(aq) \longrightarrow \begin{bmatrix} H & H \\ | & | \\ H - N:Ag:N - H \end{bmatrix} (aq)$$

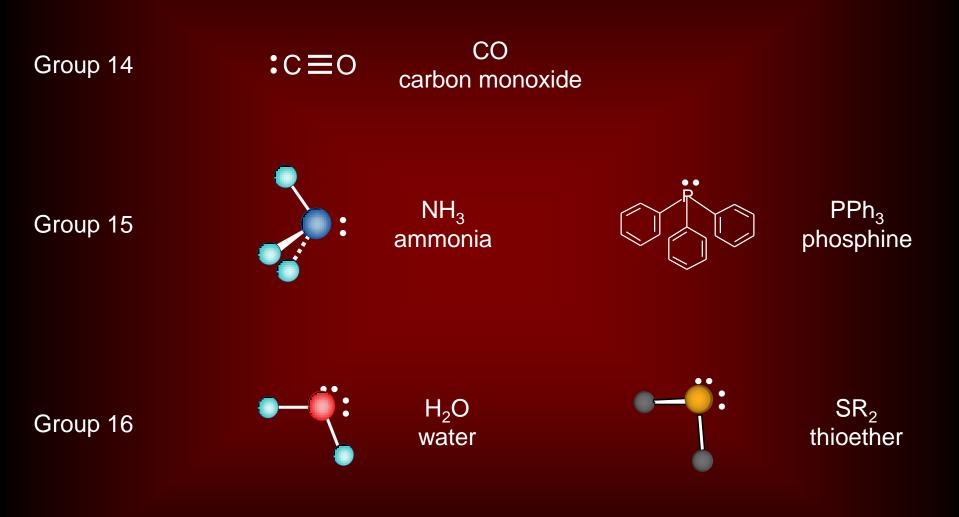
$$H = \begin{bmatrix} H & H \\ | & | \\ H & H \end{bmatrix} (aq)$$

Coordinate bonding

Each ligand donates both electrons to the bond with the metal centre


Metal-Ligand Bond

The metal's coordination ligands and geometry can greatly alter its properties, such as color, or ease of oxidation.



Lewis Model of Bonding

Neutral ligands containing Lone pairs of electrons

Ligands are bonded to the metal centre via a donor atoms

Hard donor atoms

e.g. NH₃, H₂O, OH⁻, CO₃²⁻

Small donor atoms

Electronegative

Not very polarisable

"Hard" metals

e.g. Fe(III), Mn(II), Cr(III)

Small metals (1st row)

High oxidation state

Soft donor atoms-

CO, PPh₃, C₂H₄, SRH, CN⁻, SCN⁻

Larger donor atoms

Less electronegative

Easlily polarisable

Soft metals

e.g. Ag(I), Cu(I)

Larger metals (2nd + 3rd row)

Low oxidation state

Anionic ligands containing Lone pairs of electrons

Group 14	-C≡N:	CN⁻ cyanide		Ph ⁻ phenyl
Group 15	-N=0:	NO ⁻ nitrous	¬N=c=s:	NCS ⁻ isocyanate
Group 16	- О — Н	OH ⁻ hydroxide	-S-C≡N:	SCN ⁻ thiocyanate
Group 17	x ⁻	halide	н¯	hydride

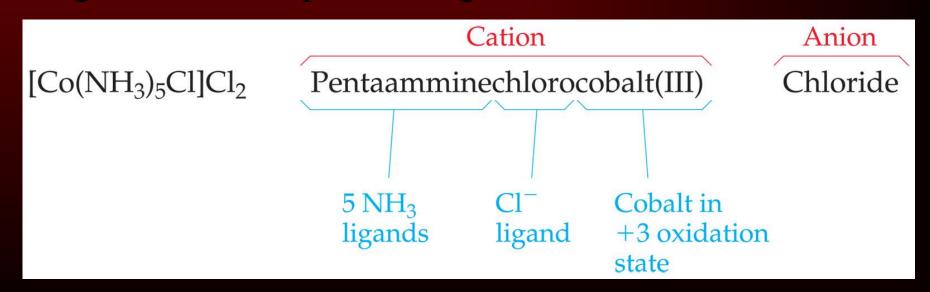
These ligands are σ -bonded to the metal centre

Ligands in Coordination Compounds

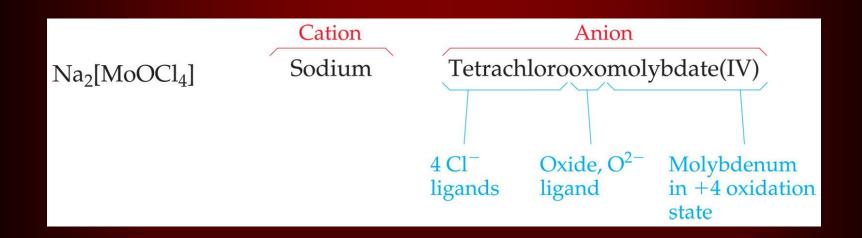
Some Common Ligands in Coordination Compounds

$$\begin{array}{ccc} H_2C - CH_2 \\ H_2 N & NH_2 \end{array} \begin{bmatrix} O & O \\ C - C \end{bmatrix}^2 - C & O \end{bmatrix}$$

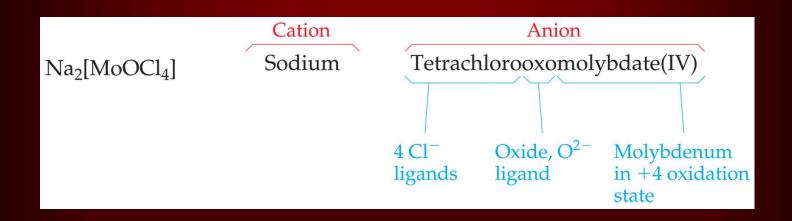
ethylenediamine (en) oxalate ion


diethylenetriamine

triphosphate ion


ethylenediaminetetraacetate (EDTA) ion

Nomenclature of Coordination Compounds


- As always the name of the **cation** appears first; the **anion** is named last.
- Ligands are listed alphabetically before the metal.
 Prefixes denoting the number of a particular ligand are ignored when alphabetizing.

- The names of anionic ligands end in "o"; the endings of the names of neutral ligands are not changed.
- Prefixes tell the number of a type of ligand in the complex. If the name of the ligand itself has such a prefix, alternatives like *bis*-, *tris*-, etc., are used.

- If the complex is an anion, its ending is changed to -ate.
- The oxidation number of the metal is listed as a Roman numeral in parentheses immediately after the name of the metal.

Names of Some Ligands

	Names of Some
Neutral	and Anionic Ligands

Name	Formula
A. Neutral	
Aqua	H ₂ O
Ammine	NH ₃
Carbonyl	CO
Nitrosyl	NO
B. Anionic	
Fluoro	F-
Chloro	CI-
Bromo	Br ⁻
lodo	I
Hydroxo	OH-
Cyano	CN-

Ligand	Complexes	Ligand	Complexes
Azide, N ₃	Azido	Oxalate, C ₂ O ₄ ²⁻	Oxalato
Bromide, Br	Bromo	Oxide, O^{2-}	Oxo
Chloride, Cl ⁻	Chloro	Ammonia, NH ₃	Ammine
Cyanide, CN ⁻	Cyano	Carbon monoxide, CO	Carbonyl
Fluoride, F	Fluoro	Ethylenediamine, en	Ethylenediamine
Hydroxide, OH ⁻	Hydroxo	Pyridine, C ₅ H ₅ N	Pyridine
Carbonate, CO_3^{2-}	Carbonato	Water, H ₂ O	Aqua

Name in

Name in

- The basic protocol in coordination nomenclature is to name the ligands attached to the metal as prefixes before the metal name.
- Some common ligands and their names are listed above.

Metal lons in Complex Anions

Names of Some Metal lons in Complex Anions

Metal	Name in Anion
Iron	Ferrate
Copper	Cuprate
Lead	Plumbate
Silver	Argentate
Gold	Aurate
Tin	Stannate

Examples

- $K_2[Co(NH_3)_2Cl_4]$
- Potassium diamminetetrachloroCobaltate(II)
- $[Co(NH_3)_4Cl_2]Cl$
- TetraamminedichloroCobalt(III) chloride
- $Na_2[Ni (NH_3) Br_2 (py) (OH)_2]$
- Ca [Fe (C_2O_4) Br (CO) $(OH)_2$]
- $[Cr (H_2O)_4 Br (py) (NO)] (SO_4)$

π - bonded ligands

The electrons in multiple bonds can act as a lone pair of electrons

$$H_{2}C \longrightarrow CH_{2}$$

$$CH_{2}$$

eta-two ethene means the C₂H₄ is bonded via two atoms to the metal

Ligand Denticity

Denticity = number of donor atoms with which a ligand can bind to a metal centre

Monodentate one donor atom per ligand

Bidentate two donor atoms per ligand

Tridentate three donor atoms per ligand

Multidentate many donor atoms per ligand

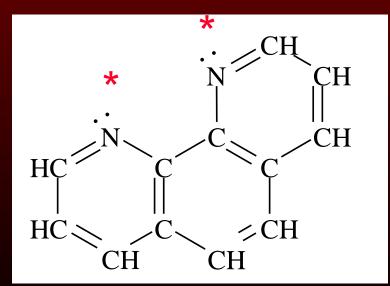
Denticity refers to the number of "teeth" a ligand has

Chelating ligand: a ligand which binds to the same metal centre with more than one donor atom

- classified according to the number of donor atoms
- Examples
 - monodentate = 1
 - bidentate = 2
 - tetradentate = 4
 - hexadentate = 6
 - polydentate = 2 or more donor atoms

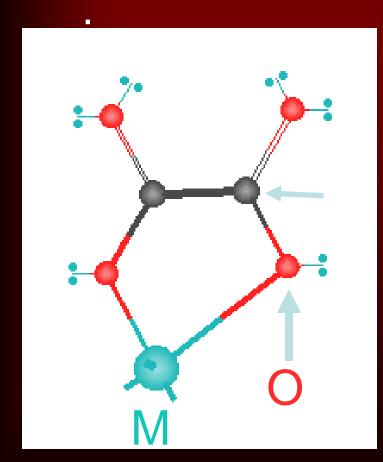
- Monodentate
 - Examples:
 - H_2O , CN^- , NH_3 , NO_2^- , SCN^- , OH^- , X^- (halides), CO, O^2 -
 - Example Complexes
 - $[Co(NH_3)_6]^{3+}$
 - $[Fe(SCN)_6]^{3-}$

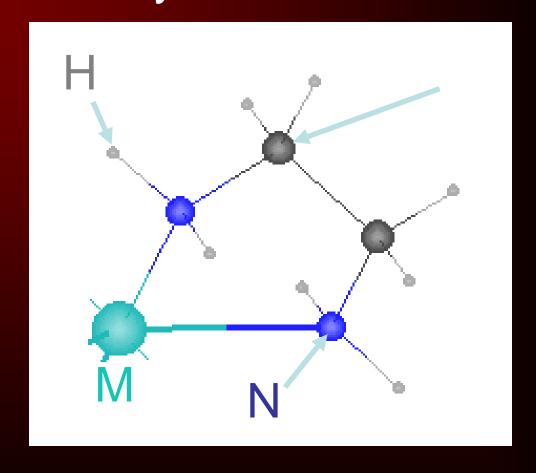
- Bidentate
 - Examples
 - oxalate ion = $C_2O_4^{2-}$
 - ethylenediamine (en) = NH₂CH₂CH₂NH₂
 - ortho-phenanthroline (o-phen)
 - Example Complexes
 - $[Co(en)_3]^{3+}$
 - $[Cr(C_2O_4)_3]^{3-}$
 - $[Fe(NH_3)_4(o-phen)]^{3+}$

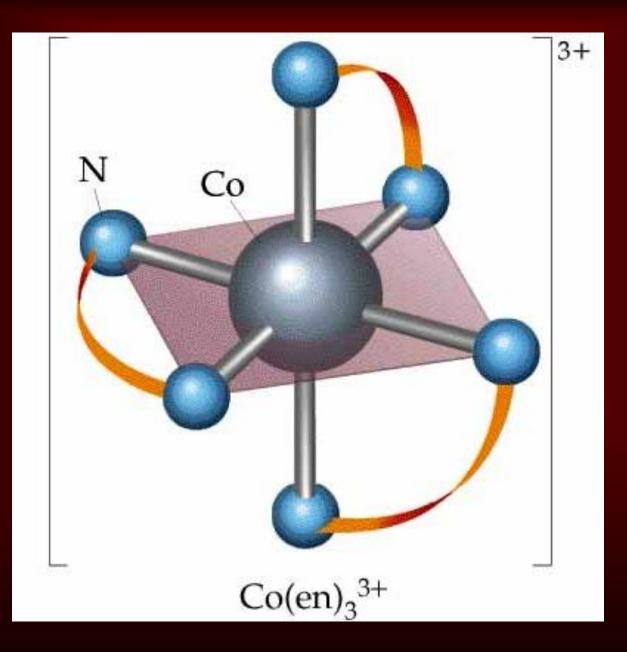

oxalate ion

ethylenediamine

$$CH_2$$
- CH_2
 H_2 N
 NH_2

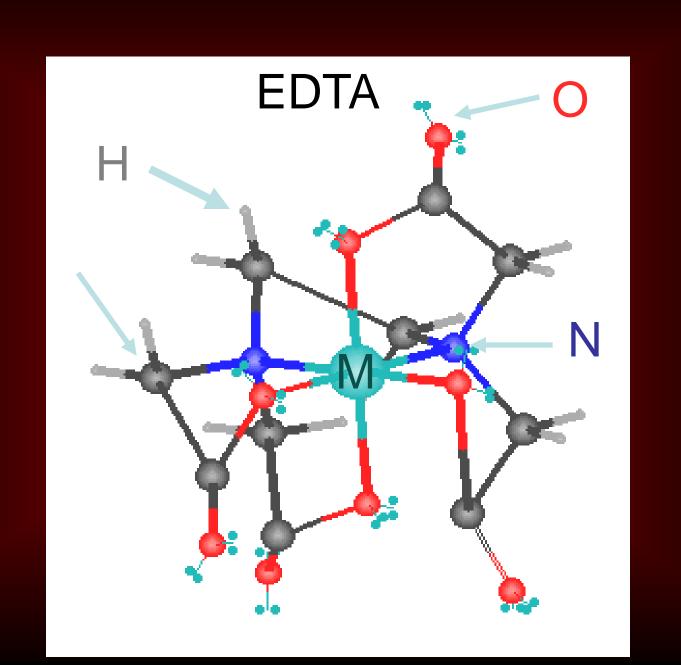

ortho-phenanthroline

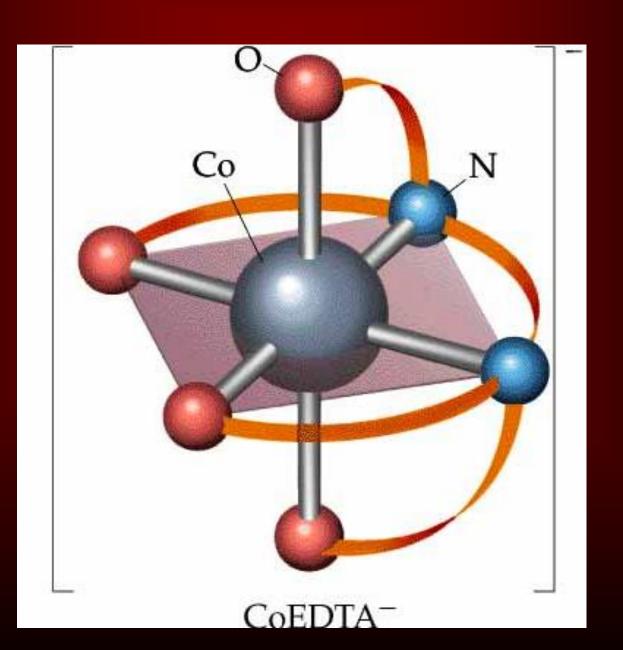

Donor Atoms

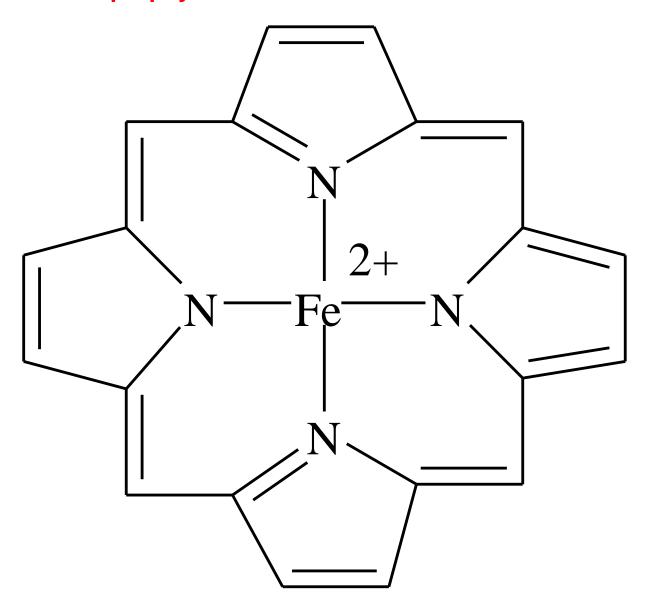


oxalate

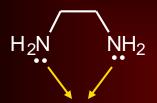
ethylenediamine





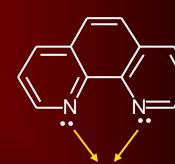

- Hexadentate
 - ethylenediaminetetraacetate (EDTA) = $(O_2CCH_2)_2N(CH_2)_2N(CH_2CO_2)_2^{4-}$
 - Example Complexes
 - [Fe(EDTA)]-1
 - [Co(EDTA)]-1

Donor Atoms



Metalloporphyrin

Neutral bidentate ligands: 2 donor atoms


e.g. [PtCl₂(en)]

five membered chelate square planar complex

1,2-diaminoethane = ethylene diamine = en

2,2'-bipyridine bpy

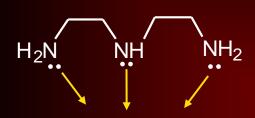
1,10-phenanthroline phen

1,2-diphenylphosphineethane dppe

Chelating ligands bind strongly to metal centres

Anionic bidentate ligands

$$H_3C$$
 acetate = ac^-

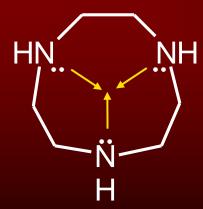

$$O O O O O O$$
oxalate = $O O O$

 π -donor bidentate ligand

Pd(II)-oxime complex

[Fe(CO)₃(η^4 -C₄H₆)]

Tridentate ligands: three donor atoms



diethylenetriamine dien

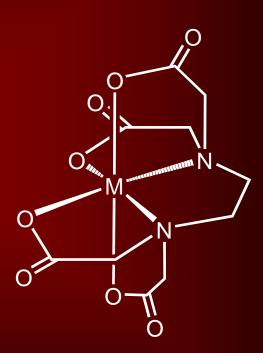
2,2':6',2"-terpyridine tpy

1,2,4-triazacyclonane macrocyclic ligand

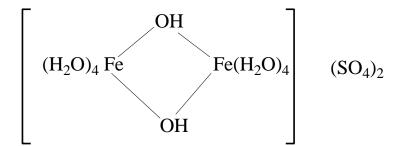
A macrocycle is a ring of at least nine atoms of which at least three are donor atoms

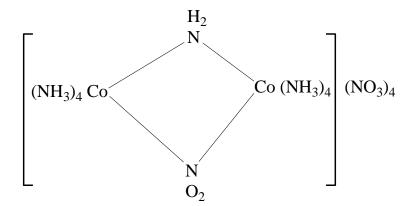
Tetradentate ligands: 4 donor atoms

tris(2-aminoethyl)amine tren


porphyrin

phthalocyanin


Multidentate ligands


tetraanion of ethylenediaminetetraacetic acid EDTA

Hexadentate

[Co(NH₃)₆] [Pt(NH₃)₃Br]

- Coordination compound
 - Compound that contains 1 or more complexes
 - Example
 - $[Co(NH_3)_6]Cl_3$
 - $\overline{\bullet [Cu(NH_3)_4][PtCl_4]}$
 - $[Pt(NH_3)_2Cl_2]$

Complex charge = sum of charges on the metal and the ligands [Fe(CN)₆]³⁻

Complex charge = sum of charges on the metal and the ligands $[Fe(CN)_6]^{3-}$

Neutral charge of coordination compound = sum of charges on metal, ligands, and counterbalancing ions $[Co(NH_3)_6]Cl_2$

neutral compound

Neutral charge of coordination compound = sum of charges on metal, ligands, and counterbalancing ions [Co(NH₃)₆]Cl₂